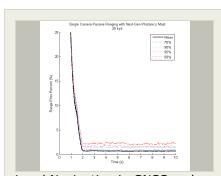
Local Navigation in GNSS and Magnetometer-Denied Environments, Phase I


Completed Technology Project (2013 - 2014)

Project Introduction

The proposed solution exploits recent advances in computer vision to conceive of a single-camera + gyro + accelerometer vision-based navigation solution such that the processing will be lightweight (requiring only a single optical flow sample per frame). Known landmarks (natural or artificial) will have absolute positions known to planetary exploration worker robots. The worker robot can identify it's absolute position by observing known landmark features and deriving range from the raw attitude sensor data and the video stream. By observing one or more landmark features during camera motion, the position uncertainty of the range and bearing from the vehicle can be estimated. Each range / bearing measurement to known landmarks acts as a constraint for the camera position in the landmark navigation space (which may be arbitrarily defined and not oriented the same as the global navigation frame). Combining the worker's rough knowledge of it's own position can further reduce the position error estimates. The single-camera passive ranging technology leverages Navy SBIR funded work for early simulation tasks.

Primary U.S. Work Locations and Key Partners

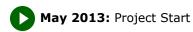
Local Navigation in GNSS and Magnetometer-Denied Environments

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Images	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Local Navigation in GNSS and Magnetometer-Denied Environments, Phase I



Completed Technology Project (2013 - 2014)

Organizations Performing Work	Role	Туре	Location
Prioria, Inc.	Lead Organization	Industry	Gainesville, Florida
Langley Research Center(LaRC)	Supporting Organization	NASA Center	Hampton, Virginia
University of Florida	Supporting Organization	Academia	Gainesville, Florida

Primary U.S. Work Locations		
Florida	Virginia	

Project Transitions

May 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140721)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Prioria, Inc.

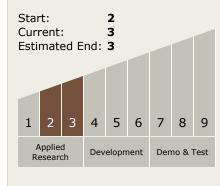
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

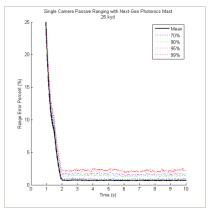

Program Manager:

Carlos Torrez

Principal Investigator:

Walter L Hunt

Technology Maturity (TRL)


Small Business Innovation Research/Small Business Tech Transfer

Local Navigation in GNSS and Magnetometer-Denied Environments, Phase I

Completed Technology Project (2013 - 2014)

Images

Project Image

Local Navigation in GNSS and Magnetometer-Denied Environments (https://techport.nasa.gov/imag e/128253)

Technology Areas

Primary:

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

